7 research outputs found

    Sensor placement for fault location identification in water networks: A minimum test cover approach

    Full text link
    This paper focuses on the optimal sensor placement problem for the identification of pipe failure locations in large-scale urban water systems. The problem involves selecting the minimum number of sensors such that every pipe failure can be uniquely localized. This problem can be viewed as a minimum test cover (MTC) problem, which is NP-hard. We consider two approaches to obtain approximate solutions to this problem. In the first approach, we transform the MTC problem to a minimum set cover (MSC) problem and use the greedy algorithm that exploits the submodularity property of the MSC problem to compute the solution to the MTC problem. In the second approach, we develop a new \textit{augmented greedy} algorithm for solving the MTC problem. This approach does not require the transformation of the MTC to MSC. Our augmented greedy algorithm provides in a significant computational improvement while guaranteeing the same approximation ratio as the first approach. We propose several metrics to evaluate the performance of the sensor placement designs. Finally, we present detailed computational experiments for a number of real water distribution networks

    Flexible Reconfiguration of Existing Urban Water Infrastructure Systems

    Get PDF
    This paper presents a practical methodology for the flexible reconfiguration of existing water distribution infrastructure, which is adaptive to the water utility constraints and facilitates in operational management for pressure and water loss control. The network topology is reconfigured into a star-like topology, where the center node is a connected subset of transmission mains, that provides connection to water sources, and the nodes are the subsystems that are connected to the sources through the center node. In the proposed approach, the system is first decomposed into the main and subsystems based on graph theory methods and then the network reconfiguration problem is approximated as a single-objective linear programming problem, which is efficiently solved using a standard solver. The performance and resiliency of the original and reconfigured systems are evaluated through direct and surrogate measures. The methodology is demonstrated using two large-scale water distribution systems, showing the flexibility of the proposed approach. The results highlight the benefits and disadvantages of network decentralization.MIT-Technion Fellowshi

    Automated sub-zoning of water distribution systems

    Get PDF
    Water distribution systems (WDS) are complex pipe networks with looped and branching topologies that often comprise thousands to tens of thousands of links and nodes. This work presents a generic framework for improved analysis and management of WDS by partitioning the system into smaller (almost) independent sub-systems with balanced loads and minimal number of interconnections. This paper compares the performance of three classes of unsupervised learning algorithms from graph theory for practical sub-zoning of WDS: (1) Global clustering – a bottom-up algorithm for clustering n objects with respect to a similarity function, (2) Community structure – a bottom-up algorithm based on the property of network modularity, which is a measure of the quality of network partition to clusters versus randomly generated graph with respect to the same nodal degree, and (3) Graph partitioning – a flat partitioning algorithm for dividing a network with n nodes into k clusters, such that the total weight of edges crossing between clusters is minimized and the loads of all the clusters are balanced. The algorithms are adapted to WDS to provide a practical decision support tool for water utilities. Visual qualitative and quantitative measures are proposed to evaluate models' performance. The three methods are applied for two large-scale water distribution systems serving heavily populated areas in Singapore.MIT-Technion FellowshipSingapore-MIT Alliance for Research and Technology (SMART
    corecore